Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.08.24.23294583

ABSTRACT

Correctional institutions are a crucial hotspot amplifying SARS-CoV-2 spread and disease disparity in the U.S. In the California state prison system, multiple massive outbreaks have been caused by transmission between prisons. Correctional staff are a likely vector for transmission into the prison system from surrounding communities. We used publicly available data to estimate the magnitude of flows to and between California state prisons, estimating rates of transmission from communities to prison staff and residents, among and between residents and staff within facilities, and between staff and residents of distinct facilities in the state's 34 prisons through March 22, 2021. We use a mechanistic model, the Hawkes process, reflecting the dynamics of SARS-CoV-2 transmission, for joint estimation of transmission rates. Using nested models for hypothesis testing, we compared the results to simplified models (i) without transmission between prisons, and (ii) with no distinction between prison staff and residents. We estimated that transmission between different facilities' staff is a significant cause of disease spread, and that staff are a vector of transmission between resident populations and outside communities. While increased screening and vaccination of correctional staff may help reduce introductions, large-scale decarceration remains crucially needed as more limited measures are not likely to prevent large-scale disease spread.

2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.22.21265396

ABSTRACT

COVID-19 outbreaks in congregate settings remain a serious threat to the health of disproportionately affected populations such as people experiencing incarceration or homelessness, the elderly, and essential workers. An individual-based model accounting for individual infectiousness over time, staff work schedules, and testing and isolation schedules was developed to simulate community transmission of SARS-CoV-2 to staff in a congregate facility and subsequent transmission within the facility that could cause an outbreak. Systematic testing strategies in which staff are tested on the first day of their workweek were found to prevent up to 16% more transmission events than testing strategies unrelated to staff schedules. Testing staff at the beginning of their workweek, implementing timely isolation following testing, limiting test turnaround time, and increasing test frequency in high transmission scenarios can supplement additional mitigation measures to aid outbreak prevention in congregate settings.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.05.21260043

ABSTRACT

While many transmission models have been developed for community spread of respiratory pathogens, less attention has been given to modeling the interdependence of disease introduction and spread seen in congregate settings, such as prisons or nursing homes. As demonstrated by the explosive outbreaks of COVID-19 seen in congregate settings, the need for effective outbreak prevention and mitigation strategies for these settings is critical. Here we consider how interventions that decrease the size of the susceptible populations, such as vaccination or depopulation, impact the expected number of infections due to outbreaks. Introduction of disease into the resident population from the community is modeled as a branching process, while spread between residents is modeled via a compartmental model. Control is modeled as a proportional decrease in both the number of susceptible residents and the reproduction number. We find that vaccination or depopulation can have a greater than linear effect on anticipated infections. For example, assuming a reproduction number of 3.0 for density-dependent COVID-19 transmission, we find that reducing the size of the susceptible population by 20% reduced overall disease burden by 47%. We highlight the California state prison system as an example for how these findings provide a quantitative framework for implementing infection control in congregate settings. Additional applications of our modeling framework include optimizing the distribution of residents into independent residential units, and comparison of preemptive versus reactive vaccination strategies.


Subject(s)
COVID-19 , Infections
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.27.20219618

ABSTRACT

BackgroundThe COVID-19 pandemic has disrupted planned annual antibiotic mass drug administration (MDA) activities which have formed the cornerstone of the largely successful global efforts to eliminate trachoma as a public health problem. MethodsUsing a mathematical model we investigate the impact of interruption to MDA in trachoma-endemic settings. We evaluate potential measures to mitigate this impact and consider alternative strategies for accelerating progress in those areas where the trachoma elimination targets may not be achievable otherwise. ResultsWe demonstrate that for districts which were hyperendemic at baseline, or where the trachoma elimination thresholds have not already been achieved after 3 rounds of MDA, the interruption to planned MDA could lead to a delay greater than the duration of interruption. We also show that an additional round of MDA in the year following MDA resumption could effectively mitigate this delay. For districts where probability of elimination under annual MDA was already very low, we demonstrate that more intensive MDA schedules are needed to achieve agreed targets. ConclusionThrough appropriate use of additional MDA, the impact of COVID-19 in terms of delay to reaching trachoma elimination targets can be effectively mitigated. Additionally, more frequent MDA may accelerate progress towards 2030 goals.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.26.20219691

ABSTRACT

Background: Progress towards elimination of trachoma as a public health problem has been substantial, but the COVID-19 pandemic has disrupted community-based control efforts. Methods: We use a susceptible-infected model to estimate the impact of delayed distribution of azithromycin treatment on the prevalence of active trachoma. Results: We identify three distinct scenarios for geographic districts depending on whether the basic reproduction number and the treatment-associated reproduction number are above or below a value of one. We find that when the basic reproduction number is below one, no significant delays in disease control will be caused. However, when the basic reproduction number is above one, significant delays can occur. In most districts a year of COVID-related delay can be mitigated by a single extra round of mass drug administration. However, supercritical districts require a new paradigm of infection control because the current strategies will not eliminate disease. Conclusion: If the pandemic can motivate judicious, community-specific implementation of control strategies, global elimination of trachoma as a public health problem could be accelerated.


Subject(s)
COVID-19 , Trachoma
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.09.20125831

ABSTRACT

The current COVID-19 pandemic has spurred concern about what interventions may be effective at reducing transmission. The city and county of San Francisco imposed a shelter-in-place order in March 2020, followed by use of a contact tracing program and a policy requiring use of cloth face masks. We used statistical estimation and simulation to estimate the effectiveness of these interventions in San Francisco. We estimated that self-isolation and other practices beginning at the time of San Francisco's shelter-in-place order reduced the effective reproduction number of COVID-19 by 35.4% (95% CI, -20.1%--81.4%). We estimated the effect of contact tracing on the effective reproduction number to be a reduction of approximately 44% times the fraction of cases that are detected, which may be modest if the detection rate is low. We estimated the impact of cloth mask adoption on reproduction number to be approximately 8.6%, and note that the benefit of mask adoption may be substantially greater for essential workers and other vulnerable populations, residents return to circulating outside the home more often. We estimated the effect of those interventions on incidence by simulating counterfactual scenarios in which contact tracing was not adopted, cloth masks were not adopted, and neither contact tracing nor cloth masks was adopted, and found increases in case counts that were modest, but relatively larger than the effects on reproduction numbers. These estimates and model results suggest that testing coverage and timing of testing and contact tracing may be important, and that modest effects on reproduction numbers can nonetheless cause substantial effects on case counts over time.


Subject(s)
COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.02.21.20026435

ABSTRACT

As of March 31, 2020 the ongoing COVID-19 epidemic that started in China in December 2019 is now generating local transmission around the world. The geographic heterogeneity and associated intervention strategies highlight the need to monitor in real time the transmission potential of COVID-19. Singapore provides a unique case example for monitoring transmission, as there have been multiple disease clusters, yet transmission remains relatively continued. Here we estimate the effective reproduction number, Rt, of COVID-19 in Singapore from the publicly available daily case series of imported and autochthonous cases by date of symptoms onset, after adjusting the local cases for reporting delays as of March 17, 2020. We also derive the reproduction number from the distribution of cluster sizes using a branching process analysis that accounts for truncation of case counts. The local incidence curve displays sub-exponential growth dynamics, with the reproduction number following a declining trend and reaching an estimate at 0.7 (95% CI: 0.3, 1.0) during the first transmission wave by February 14, 2020 while the overall R based on the cluster size distribution as of March 17, 2020 was estimated at 0.6 (95% CI: 0.4, 1.02). The overall mean reporting delay was estimated at 6.4 days (95% CI: 5.8, 6.9), but it was shorter among imported cases compared to local cases (mean 4.3 vs. 7.6 days, Wilcoxon test, p<0.001). The trajectory of the reproduction number in Singapore underscores the significant effects of successful containment efforts in Singapore, but it also suggests the need to sustain social distancing and active case finding efforts to stomp out all active chains of transmission.


Subject(s)
COVID-19
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.02.08.20021311

ABSTRACT

Abstract: The 2019-nCoV outbreak has raised concern of global spread. While person-to-person transmission within the Wuhan district has led to a large outbreak, the transmission potential outside of the region remains unclear. Here we present a simple approach for determining whether the upper limit of the confidence interval for the reproduction number exceeds one for transmission in the United States, which would allow endemic transmission. As of February 7, 2020, the number of cases in the United states support subcritical transmission, rather than ongoing transmission. However, this conclusion can change if pre-symptomatic cases resulting from human-to-human transmission have not yet been identified.

SELECTION OF CITATIONS
SEARCH DETAIL